Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the mdx heart.
نویسندگان
چکیده
Duchenne muscular dystrophy is a fatal X-linked disease characterized by the absence of dystrophin. Approximately 20% of boys will die of dilated cardiomyopathy that is associated with cytoskeletal protein disarray, contractile dysfunction, and reduced energy production. However, the mechanisms for altered energy metabolism are not yet fully clarified. Calcium influx through the L-type Ca(2+) channel is critical for maintaining cardiac excitation and contraction. The L-type Ca(2+) channel also regulates mitochondrial function and metabolic activity via transmission of movement of the auxiliary beta subunit through intermediate filament proteins. Here, we find that activation of the L-type Ca(2+) channel is unable to induce increases in mitochondrial membrane potential and metabolic activity in intact cardiac myocytes from the murine model of Duchenne muscular dystrophy (mdx) despite robust increases recorded in wt myocytes. Treatment of mdx mice with morpholino oligomers to induce exon skipping of dystrophin exon 23 (that results in functional dystrophin accumulation) or application of a peptide that resulted in block of voltage-dependent anion channel (VDAC) "rescued" mitochondrial membrane potential and metabolic activity in mdx myocytes. The mitochondrial VDAC coimmunoprecipitated with the L-type Ca(2+) channel. We conclude that the absence of dystrophin in the mdx ventricular myocyte leads to impaired functional communication between the L-type Ca(2+) channel and mitochondrial VDAC. This appears to contribute to metabolic inhibition. These findings provide new mechanistic and functional insight into cardiomyopathy associated with Duchenne muscular dystrophy.
منابع مشابه
CALL FOR PAPERS Mitochondria in Cardiovascular Physiology and Disease L-type Ca channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte
Viola HM, Davies SM, Filipovska A, Hool LC. The L-type Ca channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Am J Physiol Heart Circ Physiol 304: H767–H775, 2013. First published January 18, 2013; doi:10.1152/ajpheart.00700.2012.—The L-type Ca channel is the main route for calcium entry into cardiac myocytes, and it is essential for contraction....
متن کاملThe L-type Ca channel contributes to alterations in mitochondrial calcium
23 24 The L-type Ca channel is the main route for calcium entry into cardiac myocytes 25 and it is essential for contraction. Alterations in whole cell L-type Ca channel 26 current and Ca homeostasis have been implicated in the development of 27 cardiomyopathies. Cytoskeletal proteins can influence whole cell L-type Ca current 28 and mitochondrial function. Duchenne Muscular Dystrophy is a fata...
متن کاملInteraction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats
Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 28 شماره
صفحات -
تاریخ انتشار 2014